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Automating the Process of Invention

By leveraging the transformational potential of machine learning (ML)

More Creative Better Accelerated
& Productive Energy ARPA-E
Engineers Products Mission

ML-Enhanced

Design Tools

clIFFERENTIATE

ARPA-E Mission

Today’s Focus: Progress, Challenges & Potential Next Steps
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CIFFERENTIATE

Design Process Framework & Targeted Capabilities &
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Goal: Develop better technologies faster

Fewer & cheaper iterations
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Optimizers with Instant eval via
domain-knowledge surrogate models
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@ - Fewer iterations

@ - Faster evaluations
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Design Process Framework & Targeted Capabilities
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Goal: Develop better technologies faster

€@ Instant designs via generative models

Problem > Generation
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@ - Get it right the first time
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Progress: Domain Expert Optimizers

D’ Focus Area: Combinatorial optimization of thermodynamic systems, electrical circuits, materials
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Resistor : Switch
Capacitor Diode
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Design questions D’ Question
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Which components? What specs? How connected? - Can we teach an algorithm to answer these questions?

Yes, but ... the world is complicated.
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Circuit Design via Reinforcement Learning (RL)

d

IFFERENTIATE

°o®

Learning Process

« Build & evaluate many circuit concepts

« Components

« Connections (Wires)

« Controls (Switch Timing)
« RL algorithms learn to maximize “reward”
« Efficiency
« Cost
« NPV

Examples
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RL (UCT-DP) vs SOA

5 component circuits
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(a) Buck-Boost Converter

Fan et al, From Specification to Topology: Automatic Power
Converter Design via Reinforcement Learning, ICCAD 2021.




*Lighthill, James, “Artificial

Complexity Challenge: Combinatorial EXploSion™ i cererarsuney: 1973

Enormous design space. Most choices are bad.
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Hiah-Level Mitigations 1. Learn to make good choices
QrpPQ-@ J J 2. Efficiently weed out bad ones
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Emerging Complexity Management Solutions o000 @

Goal: Reduce cost/amount of training data

> Leverage existing knowledge
— Rules to enable rapid disposition of ‘bad’ ideas (e.g., no short circuits)
— Structured algorithms (e.g., GNNs) that respect physics & architectures

> Leverage existing data

— Historical data (good & bad)
— Previously trained (NN) algorithms (transfer learning)

> Focus on what's important
— Dimensionality reduction
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Takeaways

> ML methods offer potential for attractive design value propositions
— Domain expert optimizers dirszgger

> Challenge is management of ‘real-world-scale’ complexity
— Leverage physics to simplify ML representations & reduce training cost
— Learn when/how to transfer knowledge between applications/tools

> |ldeas? Please reach out: david.tew@hqg.doe.gov



http://david.tew@hq.doe.gov

